Science Education

Science Education

Science Education

Science Education

Jumat, 19 Desember 2014

Efek Lubang Hitam dengan Tabung Nano

Posted by Unknown On 04.27
Sebuah kekuatan penghancur berskala kecil

lubang hitam tabung nano

Para ahli fisika Harvard menemukan bahwa sebuah tabung nano bervoltasi tinggi dapat menyebabkan atom-atom dingin berpilin ke dalam dengan akselerasi dramatis sebelum hancur dengan dahsyat - sebuah kekuatan penghancur berskala kecil yang mirip dengan daya tarik tak terelakkan lubang hitam pada materi di skala kosmik.

"Yang penting bagi para ilmuwan, ini adalah penggabungan pertama dari sains atom dingin dan skala nano, dan ini membuka pintu bagi generasi baru percobaan atom dingin dan perangkat berskala nano," kata peneliti Lene Hau Vestergaard kepada jurnal Physical Review Letters.

Hau dan rekan penulis Anne Goodsell, Trygve Ristroph, dan A. Jene Golovchenko melaserdinginkan awan satu juta atom rubidium menjadi bagian kecil satu derajat di atas nol mutlak. Para fisikawan kemudian meluncurkan awan atomik berukuran milimeter ini ke tabung nano karbon dan membebankan dengan ratusan volt.

Sebagian besar atom melewati kawat dengan benar, tapi yang datang dalam satu mikron tak dapat menghindar dan tertarik, mencapai kecepatan tinggi luar biasa ketika atom-atom itu berpilin ke dalam tabung nano. "Dari sebuah permulaan sekitar 5 meter per detik, atom-atom dingin mencapai kecepatan kasar 1.200 meter per detik atau 4.320 km/jam ketika mereka memutari tabung nano," kata Goodsell. "Sebagai bagian dari akselerasi luar biasa ini, temperatur yang berhubungan dengan energi kinetis atom meningkat dari 0,1 derajat Kelvin ke ribuan derajat Kelvin dalam waktu kurang dari satu mikrodetik."

Atom dalam percepatan itu kemudian berpisah menjadi satu elektron dan satu ion berotasi pararel di sekitar kawat nano, menyelesaikan setiap orbit hanya dalam beberapa milyar dari satu detik. Elektron itu pada akhirnya terhisap ke dalam tabung nano melalui penerowongan kuantum, menyebabkan teman ionnya tertembak ke luar - terpukul oleh beban tabung nano 300 volt - pada kecepatan berkisar 26 kilometer per detik (93.600 km/jam).

"Sains atom dingin dan skala nano masing-masing telah menyediakan sistem menyenangkan baru untuk penelitian dan aplikasi," kata Golovchenko yang merupakan Profesor Fisika di Harvard. "Ini merupakan realisasi eksperimental pertama suatu sistem gabungan atom dingin dan struktur nano. Sistem kami mempertunjukkan penyelidikan sensitif kedinamisan atom, elektron, dan ion pada skala nano."


sumber : http://sainspop.blogspot.com/2010/04/efek-lubang-hitam-dengan-tabung-nano.html
Sebuah antioksidan bisa saja mencegah kerusakan pada hati atau liver yang disebabkan oleh konsumsi alkohol berlebihan, menurut penelitian dari Universitas Alabama di Birmingham.

Antioksidan Bisa Mencegah Penyakit Hati Yang Disebabkan Alkohol

Penemuan ini bisa menunjukkan cara perawatan untuk membalikkan steatosis, atau timbunan berlemak dalam hati yang bisa berujung pada sirkosis dan kanker. Tim peneliti yang diketuai oleh Victor Darley-Usmar, Ph.D., profesor patologi di UAB, memperkenalkan sebuah antioksidan bernama Mitochondria-targeted ubiquinone, atau MitoQ, ke mitokondria tikus yang diberikan alkohol setiap hari selama lima hingga enam minggu dalam jumlah yang cukup untuk menyamai konsumsi alkohol berlebihan pada manusia.

Alkoholik kronis, mereka yang minum berlebihan setiap hari, mengalami penimbunan lemak dalam sel-sel hati. Ketika alkohol dimetabolisir dalam hati, dia menciptakan radikal-radikal bebas yang merusak mitokondria dalam sel-sel hati dan mencegah mereka untuk menggunakan sejumlah oksigen yang cukup untuk menghasilkan energi. Lagi pula, kondisi rendah oksigen yang disebut hipoksia memperburuk kerusakan mitokondria dan mendukung pembentukan timbunan lemak yang dapat berujung pada sirkosis.

Darley-Usmar beserta para rekan kerjanya mengatakan bahwa antioksidan MitoQ tersebut mampu mencegah dan menetralisir radikal-radikal bebas sebelum mereka merusak mitokondria, mencegah rentetan efek-efek yang pada akhirnya berujung pada steatosis.

"Belum ada pendekatan secara farmasi yang menjanjikan pada pencegahan atau pembalikkan kerusakan jangka panjang yang berhubungan dengan timbunan lemak di hati yang dihasilkan dari konsumsi alkohol berlebihan," kata Darley-Usmar. "Penemuan kami memberitahukan bahwa MitoQ bisa saja menjadi alat yang berguna bagi perawatan kerusakan hati oleh kebiasaan penggunaan alkohol yang lama."

"Studi-studi sebelumnya telah menunjukkan bahwa MitoQ dapat secara aman diberikan pada manusia dalam jangka waktu lama," kata Balu Chacko, Ph.D., rekan peneliti dan penggagas studi tersebut. "Antioksidan tersebut bisa saja berpotensi untuk memperbaiki tahap-tahap awal penyakit hati berlemak pada pasien-pasien dengan penyakit hati alkoholik dan non alkoholik."

Catatan Tahunan Hepatologi memperkirakan bahwa penyalahgunaan alkohol memakan biaya $185 milyar setiap tahun di Amerika Serikat, dan bahwa 2 juta orang mengidap beberapa bentuk penyakit hati alkoholik. Sebanyak 90 persen sirkosis hati terhubung dengan penyalahgunaan alkohol dan mencapai 30 persen kanker hati.

Darley-Usmar, yang juga merupakan direktur Pusat Radikal Bebas Biologi di UAB, mengatakan bahwa timnya berdiskusi dengan Institut Kesehatan Nasional untuk mengembangkan seluruh keluarga obat-obatan berbasis di interaksi dengan mitokondria. Dia mengatakan obat-obatan seperti itu mungkin efektif dalam perawatan penyakit kardiovaskuler, penyakit ginjal dan gangguan neurodegeneratif.

"Kami tahu bahwa radikal bebas memainkan peran pada penyakit manusia, dan kami telah mengembangkan antioksidan yang dapat mengeliminasi radikal-radikal bebas di laboratorium," katanya. "Sayangnya, uji coba sebelumnya menggunakan antioksidan pada manusia belum memuaskan. Perbedaannya dengan penemuan kami ialah kami menargetkan bagian khusus sel yaitu mitokondria. Ini merupakan pendekatan unik, dan ini merupakan salah satu dari sedikit uji coba pra-klinik yang menunjukkan keefektifan."

Darley-Usmar mengatakan penemuan tersebut juga bisa berdampak signifikan terhadap pengobatan sindrom metabolik, kondisi yang bertumbuh sangat cepat yang mempengaruhi sekitar 50 juta orang Amerika, menurut Asosiasi Jantung Amerika.

"Sindrom Metabolik digambarkan sebagai interaksi rumit dari faktor-faktor yang disebabkan oleh obesitas yang termasuk kerusakan pada hati karena peningkatan radikal bebas, hipoksia dan deposisi lemak," kata Darley-Usmar. "Hal tersebut cukup mirip dengan hepatotoksisiti ketergantungan alkohol. Akan menyenangkan untuk melihat apabila sebuah antioksidan seperti MitoQ memiliki efek terapis dalam mencegah kerusakan hati pada mereka yang menderita sindrom metabolik."

sumber : http://sainspop.blogspot.com/2011/05/antioksidan-bisa-mencegah-penyakit-hati.html

Pelipatan Protein: Sisi Gelap Protein

Posted by Unknown On 04.25
Hampir semua protein manusia memiliki segmen yang bisa membentuk amiloid yang berperan dalam menimbulkan penyakit. Akan tetapi sel-sel telah mengembangkan beberapa pertahanan rumit, seperti yang ditemukan Jim Schnabel.

segmen protein


Segmen protein dengan struktur 'steric zipper' bertautan membentuk tulang punggung fibril amiloid .M. R. SAWAYA

Menjadi amiloid merupakan salah satu hal terburuk dari sekian perubahan protein menjadi tidak baik. Dalam hal ini elemen-elemen yang sifatnya lengket dalam protein muncul dan menyemaikan pertumbuhan seperti fibril-fibril yang mematikan.

Penelitian sekarang menunjukan suatu gambaran yang lebih mengkhawatirkan. Dalam suatu kerja yang dilaporkan pada bulan Februari, tim yang dipimpin David Eisenberg di Universitas California, Los Angeles, menyaring ribuan protein untuk mencari bagian-bagian dengan kelengketan khusus yang dapat membentuk amiloid. "Efektifnya, semua protein kompleks memiliki bagian-bagian pendek ini yang jika terbuka dan cukup fleksibel mampu memicu pembentukan amiloid," kata Eisenberg seperti yang dikutip Nature.

Akan tetapi, tidak semua protein membentuk amiloid. 'Amylome', seperti yang dinamakan Eisenberg, terbatas karena hampir semua protein menyembunyikan bagian-bagian lengket ini dari langkah yang membahayakan atau setidaknya tetap mengontrol kelengketan mereka. Penemuannya dan penelitian lain mengindikasikan bahwa evolusi memperlakukan amiloid-amiloid sebagai suatu ancaman fundamental. Amiloid telah ditemukan di beberapa penyakit umum yang berhubungan dengan penuaan/umur, dan ada bukti bahwa penuaan itu sendiri membuat beberapa akumulasi amiloid tidak dapat dihindarkan.

"Keadaan amiloid seperti keadaan kegagalan suatu protein, dan dengan tidak adanya mekanisme proteksi, banyak protein kita menjadi demikian," kata Chris Dobson yang merupakan ilmuwan biologi struktural di Universitas Cabridge, Inggris. Beberapa laboratorium sekarang mencoba mencari cara untuk menambah atau meningkatkan mekanisme proteksi ini, dengan harapan memperlakukan atau mencegah tempat bersarangnya penyakit-penyakit yang berhubungan dengan amiloid. "Berbagai kemajuan dalam memahami amiloid bisa membawa kepada suatu kelas baru yang sangat kuat dari pengobatan untuk banyak kondisi-kondisi yang berhubungan dengan faktor usia," kata Sam Gandy yang merupakan seorang ilmuwan neurobiologi dan pengajar di Sekolah Pengobatan Mount Sinai, New York.

Jumlah Fibril Yang Banyak

Penelitian terakhir amiloid telah sebagian mengkonfirmasikan prediksi yang dibuat 75 tahun lalu oleh ilmuwan biofisika berkebangsaan Inggris William Astbury. Protein pada mulanya berbentuk rantai asam amino linier, namun kemudian kebanyakan melipat menjadi bentuk 'bundar' tiga dimensi yang kompleks. Astbury mengemukakan bahwa hampir setiap protein bundar bisa dibuat untuk membentuk fibril yang bersifat mengganggu dengan cara merusak atau 'mengubah sifatnya' dengan panas atau dengan bahan kimia. Pada tahun 80an, para peneliti mengetahui bahwa fibril yang ditimbulkan dengan stimulasi ini memiliki struktur ganjil yang sama seperti yang ditemukan pada penyakit yang berhubungan dengan amiloid, seperti tumpukan amiloid-ß pada otak orang-orang yang menderita Penyakit Alzheimer. Akan tetapi potensi besar protein secara alami membentuk struktur dasar ini belum terlihat langsung saat itu. "Paradigma sebelumnya ialah bahwa seluruh protein membuka dan kemudian terlipat kembali menjadi struktur berserat," kata Eisenberg.

    "Kebanyakan protein telah mengembangkan suatu cara untuk melipat dengan efektif menutup bagian-bagian yang rentan amiloid."

Pada tahun 1999, jelaslah bahwa banyak protein bisa dibuat untuk membentuk amiloid. Dobson mengemukakan bahwa proses pembukaan membuka kelengketan esensial dalam tulang punggung rantai asam amino protein. Para peneliti juga menghubungkan lebih banyak protein yang membentuk amiloid kepada penyakit, termasuk protein tau pada penyakit Alzheimer, a-synuclein pada Penyakit Parkinson, polyglutamine pada Penyakit Huntington, protein prion pada Penyakit Creutzfeldt-Jakob dan amylin pada Penyakit Diabetes tipe 2.

Eisenberg dan koleganya mempelajari protein seperti itu menggunakan pengujian kadar logam pembentukan fibril dan teknik difraksi sinar X dan menemukan bahwa kecenderungannya membentuk amiloid datang dari bagian terentu di dalamnya. Bagian ini biasanya sepanjang enam asam amino, dan bisa terbuka ketika protein sebagian tidak terbuka.

Bagian 'amyloidogenic' ini yang ditemukan oleh tim Eisenberg, memiliki suatu struktur 'steric zipper' yang bisa melengkapi diri sendiri yang memperkenankannya bertautan rapat dengan bagian identik terbuka pada protein lain. Beberapa bagian ini diperlukan untuk menyemaikan atau menukliasi amiloid. Bagian-bagian menumpuk di atas satu sama lain membentuk lembaran-lembaran, dua menutup bersama membentuk tulang punggung fibril. Ketika ia tumbuh, fibril dipagari oleh sisa bagian protein host. Pada akhirnya, fibril ini pecah membentuk dua fibril yang lebih kecil, yang masing-masing akan tumbuh dari kedua ujungnya lagi dan seterusnya. "Kejadian nukliasi mungkin saja langka," kata Eisenberg, "tapi begitu dimulai, dia akan menyebar."

Dalam studi mereka, tim Eisenberg menggunakan suatu algoritma komputer untuk menentukan kapan bagian pendek protein memiliki potensi pembentukan steric-zipper, berdasarkan perkiraan struktur tiga dimensinya. Setelah mengkalibrasi bagian-bagian amiloid yang diketahui, tim itu mengaplikasikan algoritme ke genom manusia, ragi yang berpotensi dan bakteri Escherichia coli dan menemukan bahwa sekitar 15% bagian-bagian pendek ini yang disusun oleh gen-gen pada organisme ini memiliki sifat ini. "Pada angka itu, kebanyakan protein memiliki setidaknya beberapa bagian yang mudah membentuk amiloid," kata Eisenberg.

Kerja itu membantu mengklarifikasi mengapa denaturasi protein kadang membawa kepada situasi amiloid, kata Jeffery Kelly yang merupakan ilmuwan biologi struktural dan ahli amiloid di Institut Penelitian Scripps di La Jolla, California. "Itu memberikan kita gagasan yang lebih baik tentang mengapa beberapa protein harus sebagian membuka sebelum mereka mulai membentuk amiloid-amiloid."

Eisenberg, Dobson dan lainnya telah berspekulasi bahwa kelengketan yang melengkapi diri sendir dari bagian-bagian pendek ini mungkin menjadikan mereka sebagai blok-blok pembangun yang berguna pada tahap-tahap permulaan kehidupan di Bumi. Lagi pula, laporan-laporan telah mulai memunculkan protein yang berfungsi normal pada situasi amiloid, sebagai contoh, beberapa kelenjar hormon. "Sekarang kita tahu lebih dari dua lusin amiloid alami, jadi situasi ini jelas digunakan oleh biologi secara fungsional maupun disfungsional," kata Eisenberg.

Bahkan demikian, kata Kelly, amiloid alami ini "sangat teratur", sebagai contoh, tersimpan dalam ruangan membran yang disebut gelembung. "Itulah mengapa biologi bisa menggunakannya dan tidak menderita konsekuensinya."

Kebanyakan protein modern melipat ke dalam struktur bundar. Tetapi pola pelipatannya begitu kompleks sehingga tidak mungkin dapat berkembang dengan tidak sengaja. "Jika anda memiliki sebuah mesin yang dapat memproduksi rangkaian protein secara acak, anda hanya akan mendapatkan satu yang bisa tetap stabil pada keadaan bundar dan dapat larut.," kata Dobson.

Sejumlah mekanisme yang berkembang merupakan pokok yang mendasari stabilitas tersebut. Ketika protein-protein pada mulanya disatukan dan mulai melipat, protein-protein 'chaperone' dan molekul-molekul terkait ada di sana untuk menjaga pembentukan amiloid. Sistem lain bertugas mengenali, mengasingkan dan menghancurkan amiloid-amiloid ketika mereka benar-benar terbentuk.

Keadaan alami pelipatan menawarkan proteksinya sendiri yang kuat. Kelompok Eisenberg memeriksa lebih dari 12.000 protein yang lipatannya, struktur tiga dimensi sudah diketahui. Mereka menemukan bahwa 95% dari bagian-bagian yang diprediksi rentan amiloid dikubur dalam struktur protein inangnya, dan yang terbuka menjadi terlalu membelit dan tidak fleksibel untuk bergabung dengan bagian lainnya. "Nampaknya kebanyakan protein telah berkembang untuk melipat dalam suatu cara yang secara efektif menutup bagian-bagian rentan amiloid," kata Eisenberg. Jadi evolusi tidak perlu membuang bagian-bagian tersebut sekaligus.

sumber : http://sainspop.blogspot.com/2010/05/pelipatan-protein-sisi-gelap-protein.html

IDENTIFIKASI BAHAYA BAHAN-BAHAN KIMIA

Posted by Unknown On 04.21
Dalam upaya memastikan bahan kimia yang berbahaya ada di tempat kerja, maka perlu dilakukan identifikasi awal.
Identifikasi awal dapat dilakukan berdasarkan pada:
1.   Data bahan kimia yang diterima oleh pihak gudang.
2.   Bahan kimia yang biasa dipergunakan oleh suatu tempat kerja.
3.   Proses yang ada.
Identifikasi awal yang dilakukan secara umum memakai format berikut:
1.   Nama bahan kimia:
      Keperluan untuk ini jelas, tetapi nama populer ataupun nama merek harus di berikan sebagaimana nama kimianya. Hal ini seperti asam asetil salisilat yang berarti aspirin bagi ahli kimia, tidak membingungkan operator yang telah berpengalaman. Contoh lain adalah H2S bagi ahli kimia berarti hidrogen sulfida bagi insinyur, kalsium hipoklorit sama dengan kapur klor, fenol menjadi asam karbolat, dan soda kue menjadi soda bikarbonat.
2.   Apa kondisi fisiknya?
      Obyek ini untuk menentukan secara sederhana apakah bahan kimia yang diterima berbentuk padat,cair, atau gas- bukan sifat fisik secara umum. Juga harus diperhatikan pada kondisi apa suatu bahan kimia berbentuk padat,cair, atau gas. Misalnya natrium hidroksida (NaOH) yang dapat dibeli sebagai padatan di drum atau larutan kuat di tankker atau drum; karbon dioksida dapat dibeli sebagai padatan,cairan, atau gas. Secara umum, panas masuk atau panas keluar diperlukan untuk pengubahan bentuk, sehingga identifikasi ini menentukan bagaimana dan dimana bahan kimia harus disimpan. Apakah matahari dan panas mempengaruhi? Apakah bahan itu akan membeku bila dibiarkan terbuka? Bila berbentuk padat, apakah berupa bubuk ? Perhatian harus diberikan jika bahan disimpan dalam bentuk yang stabil, seperti karbon dioksida yang disimpan dalam bentuk padat. Bahaya dapat terjadi karena beberapa hal, seperti temperatur yang naik dengan cepat karena kebakaran.dan emisi yang cepat karena kebocoran. Bila berupa cairan, kemana mengalirnya kebocoran? Dapatkah aliran dari drum ke lubang penampung (damp ground), atau membuat korosi internal bila disimpan dalam waktu lama?
3.   Apakah beracun?
  • Apakah menyebabkan akut?
  • Apakah menyebabkan kronis?
  • Apakah masuk melalui saluran makanan?
  • Apakah masuk melalui pernapasan?
  • Apakah masuk melalui absorpsi?
  • Apakah kadar toksisitas dapat segera ditentukan?
  • Berapakah nilai Ambang Batas (MAC) nya?
Klarifikasi antara kadar racun dengan bahaya harus dimengerti dengan jelas. Kadar racun bahan kimia adalah satu dari sipat-sipat alami nyang tidak dapat dihilangkan bila bahan kimia tersebut tetap sama rumus bangunnya, tetapi bahaya ditentukan oleh frekuensi dan lamanya pemaparan dan konsentrasi bahan kimia. Cedera tidak akan terjadi tanpa pemaparan konsentrasi yang diberikan dan rancangan dan operasi proses bahan kimia yang menentukan banyaknya pemaparan,konsentrasi dan lain-lain. Karenanya, dengan rancangan yang benar dan penanganan yang aman, bahaya dapat dihilangkan atau tanda-tanda potensinya dapat diredakan.
Karena penggunaannya yang sangat umum, hampir dapat dikatakan bahwa semua mengetahui bahwa asam sulfat pekat merupakan cairan korosif yang dengan cepat dapat menghancurkan jaringan badan dan membuat luka bakar. Meskipun demikian, ratusan ton asam sulfat dimanipulasi,ditransfer, dan disimpan setiap hari tanpa bahaya yang besar. Hal ini disebabkan sifat-sifat racunnya telah diketahui dan difahami dan cara-cara pencegahan kecelakaannya telah dibuat. Hasil; kontak dengan asam sulfat terjadi dengan cepat dan akut, tetapi meskipun benzene dalam kuantitas sedikit dikulit tidak merupakan hal yang berbahaya, efek akumulatif dari sifat-sifatnya dapat memicu anemia yang serius dan kematian.
Aspek lanjutan dari pertanyaan mengenai kadar racun dapat segera ditentukan dan apakah Nilai Ambang Batas (NAB) yang dinyatakan dalam bagian per juta, yang menyatakan kondisi yang karyawan dapat terpapar setiap hari tanpa mengalami efek yang berarti. Tetapi, peringatan harus diberikan bahwa NAB, dalam konteks yang benar, hanya dapat dinterpretasikan dengan benar oleh personil yang terlatih dalam higiene industri, dan tidak boleh digunakan sebagai:
  1. Indeks relatif atas bahaya atau kadar racun;
  2. Alat evaluasi pada gangguan polusi udara;
  3. Perkiraan potensi racun pada pemaparan terus-menerus yang tidak berhenti.
Meskipun bahaya yang terditeksi sebagai bau tidak dapat diyakinkan benar, tetapi tidak ada keraguan bahwa bau khas dari beberapa bahan kimia merupakan indikasi yang jelas akan adanya bahan kimia tersebut, meskipun bukan konsentrasinya. Berikut ini adalah bahaya dari pemantauan dengan orang. Sebagai contoh, bau dari klorin (Cl2 ) dapat dikenali dengan tercium pada konsentrasi yang sangat kecil, dan karena tidak ada efek iritasi yangnyata dalam waktu cepat, maka tidak ada tindakan perbaikan. Tetapi konsentrasi maksimum yang diperbolehkan untuk klorin di udara adalah satu bagian klorin per satu juta bagian udara untuk delepan jam pemaparan, dan konsentrasi terkecil yang dapat terditeksi oleh manusia pada umumnya adalah tiga sampai empat bagian klorin per satu juta bagian udara. Hal ini menunjukkan bahwa bila klorin tercium berarti ada instalasi yang perlu diperbaiki.
4.   Berapakah:
             -   Densitas uap?
             -   Tekanan uap?
             -   Titik beku?
             -   Specific Gravity?
             -   Kelarutan dalam air?
Pengetahuan atas kelima karakter fisik di atas memberikan fakta dan informasi yang terpisah dan berharga. Semua cairan akan menguap, tetapi kecepatan penguapannya tergantung pada suhu dan tekanan; secara umum cairan panas menguap lebih cepat daripada cairan dingin. Tekanan uap cairan dan larutan harus diperhatikan, terutama pada suhu ruang. Hal ini sangat penting bila menyimpan drum berisi cairan berbahaya. Kebocoran dari beberapa bahan kimia, dapat menimbulkan bahaya. Perbandinga berat jenis antara uap/gas dengan udara menunjukkan apakah uap pada suhu normal (0° C) dan tekanan normal (76cm-Hg) lebih padat atau lebih renggang daripada udara; karena uap itu akan naik ke atmosfir atau turun. Sebagai contoh adalah petroleum yang memiliki berat jenis 2,5. Kebocoran petroleum, setelah menguap pada suhu normal, membentik uap cenderung bergerak sepanjang permukaan. Beberapa kondisi yang mempengaruhi seperti kecepatan angin dan suhu sekitar membantu petrpleum menyebar cukup jauh dari lubang inpeksi, tetapi uap petroleum bergerak disepanjang lubang, menghasilkan atmosfir mudah meledak yang dapat menghasilkan bencana hanya dengan adanya letikan api.
Pentingnya pengetahuan tentang specfic grafvity terlihat nyata saat menentukan tindakan yang hrus diambil saat menghadapi kebocoran besar. Perbandingan berat jenis bahan kimia dengan berat jenis air menunjakan apakah bahan kimia akan mengambang di atas air atau tenggelam. Semua cairan bocor diarahkan mencapai saluran buang, dan ledakan dibawah tanah akibat kontaminasi oleh cairan sangat mudah terbakar dapat membuat kerusakan hebat di area yang luas. Bahan tersebut contohnya adalah petroleum memiliki berat jenis 0,80, sehingga bocoran akan mengambang di atas air. Karenanya air tidak direkomendasikan sebagai bahan pemadam untuk kebakaran petroleum cair, karena air akan tenggelam di bawah petroleum, dan dengan naiknya volume cairan, maka akan cenderung memperlebar area kebakaran. Membiarkan petroleum keluar kesaluran buang hanya akan meningkatkan bahaya.
Sebaliknya, bila cairan karbon disulfida yang sangat mudah terbakar, memiliki titik nyala yang rendah dan titiok bakar yang rendah, memiliki specific gravity 1,26 terbakar, maka dapat dikendalikan dengan menggunakan air yang cukup.
Bila bahan kimia dapat larut dalam air, kebocoran apapun akan mudah bergabung karena dapat dijenuhkan dengan air dan setelah pencegahan yang layak telah dilakukan, dapat dikeluarkan ke sistem efluen.
Sehubungan dengan kemampuan pelarutan bahan kimia ke dalam air, harus pula diperhatikan bahaya yang mungkin terjadi pada beberapa bahan kimia. Beberapa kasus pernah terjadi yang menimbulkan cedera serius yang timbul akibat masuknya air ke dalam wadah kosong berbagai bahan kimia menyebabkan reaksi yang hebat. Sebagai contoh adalah fosfor klorida yang bukan bahan kimia korosif, tetapi setelah kontak dengan air atau uap air, akan bereaksi hebat, melepas panas dan uap klorosif asam klorida. Contoh lain adalah sejumlah natrium sianida dengan air di saluran buang. Reaksi antara natrium sianida dengan air di saluran buang memperbesar volume gas asam sianida yang mematikan. Bahan kimia seperti asam sulfat jika bercampur dengan air akan menghasilkan uap air yang cukup untuk menyebabkan semburan. Karenanya, kemempuan suatu bahan kimia untuk larut dalam air memerlukan penanganan yang tepat.
5.   Apa bahan yang inkompatibilitas?
Beberapa bahan kimia bereaksi hebat dengan bahan kimia lain dan bahan-bahan yang berhubungan tersebut disebut inkompatibel. Sebagai contoh adalah asetilene yang akan bereaksi hebat dengan klorin, Sehingga kecelakaan yang memungkinkan bergabingnya dua bahan kimia tersebut harus dicegah. Sama halnya dengan asam nitrat yang tidak boleh dibawa sampai kontak dengan cairan yang mudah terbakar. Bahaya sesungguhnya dari inkompatibilitas terjadi akibat kesalahan dalam melakukan asesmen, sehingga saat beberapa bahan kimia dibawa bersama-sama dengan kurang hati-hati, terjadi reaksi hebat, dan merusak pabrik dan personilnya. Kemungkinan akibat pencampuran yang tidak direncanakan harus selalu diawasi.
Bahan inkompabilitas lain adalah oksidator dan reduktor. Beberapa bahan kimia yang tidak terbakar mampu membantu dengan baik pembakaran saat berkombinasi dengan bahan kimia lain yang menghasilkan oksigan dalam jumlah yang besar. Tidak hanya atmosfir dengan cepat dipenuhi oleh oksigen, tetapi panas reaksi mungkin cukup untukj membuat pembakaran dan kebakaran dapat terjadi. Oksidsi adalah kombinasi oksigen bahan kimia denga bahan lain; dapat cepat atau lambat, dan bahan yang dengan cepat dapat memberikan oksigennya ke bahan lain disebut oksidator, seperti asam nitrat (HNO3), mangan oksida (MnO2), hidrogen peroksida (H2O2 ), dan asam kromat (CrO3).
Sebaliknya, bahan yang mengambil oksigen dari senyawa dan kombinasinya disebut reduktor, seperti hidrogen, karbon,hidrokarbon, bahan organik, dan lain-lain.
Oksidasi dan reduksi adalah proses yang berlawanan yang selalu terjadi bersamaan, dan bahan yang inkompatibilitas seperti kalium permanganat  (KmnO), yang merupakan oksidator kuat, bila tergabung dengan bubuk alumunium, yang merupakan reduktor kuat, dengan cepat mengibah sifat-sifat alamiahnya dengan memperlihatkan bahwa kedua bahan tidak boleh disimpan berdekatan.
6.   Apakah bahan mudah terbakar atau sangat mudah terbakar?
         -   Berapa titik nyalanya?
         -   Berapa batas LEL dan UEL nya?
         -   Berapa titk bakarnya?
7.   Tipe pemadam api apa yang harus digunakan?
8.   Alat pelindung diri apa yang harus digunakan?
9.   Sistem pencegahan lain?
Proses yang ada, selain proses yang sudah fix, yang berpotensi menyebabkan bahaya akibat bahan kimia antara lain adalah:
1.      Pengelasan dalam ruang terbatas ( confined space), seperti di dalam tangki; akan menghasilkan NO, ozon, uap logam.
2.       Pengelasan , bila logam yang akan di las telah dibersihkan dengan chlorinated hydrocarbon (seperti CC); akan menghasilkan NO, ozon, uap, fosgene,HC1.
3.      Dekomposisi bahan organik; akan menghasilkan hidrogen sulfida, amoniak,metana,CO2.
4.      Asam klorida, HC1, bila disimpan dalam wadah baja  ‘pickle’ , tidakhanya pengetahuan bagaimana menangani asam itu sendiri, tetapi juga evolusi hidrogen dalam proses dan sisa bahan yang tidak diinginkan karena tertinggal di wadah.
 
sumber : http://artikelkimiaterbaru.blogspot.com/2014/01/identifikasi-bahaya-bahan-bahan-kimia.html
Kebanyakan atom atau unsur memiliki kecenderungan untuk membentuk molekul senyawa dengan karakteristik yang berbeda dengan unsur penyusunnya maupun unsur lain yang ada di tabel periodik. Namun beberapa unsur ditemui dapat membentuk kelompok atom yang menyerupai unsur lain di tabel periodik dengan karakter magnetik yang tidak biasa.
Suatu tim dari Virginia Commonwealth University telah menemukan suatu jenis baru superatom. Superatom ini terdiri dari atom magnesium yang termagnetisasi, meskipun magnesium alami tidak memiliki aktivitas magnetisme. Tim ini melaporkan bahwa superatom ini terbentuk dari logam pusat besi (Fe) dan 8 atom magnesium (Mg) membentuk struktur yang stabil menyerupai ikosahedral. Klaster ini membentuk semacam magnet kecil dengan sumber magnet berasal dari logam besi dan magnesium yang termagnetisasi. Kombinasi ini sesuai dengan kekuatan magnet dari satu atom Fe dengan distrbusi elektron spin tertentu yang merata di seluruh bagian klaster. Hasil riset mereka telah dipublikasikan pada Proceedings of the National Academy of Sciences.
Riset yang didukung oleh U.S Department of Energy ini membuka peluang ditemukannya metode yang lebih efisien untuk mengubah atom yang tidak bersifat magnet menjadi magnet melalui pengaturan atom magnet tunggal. Meskipun terdapat lebih dari seratus unsur pada tabel periodik, hanya terdapat 9 unsur yang memiliiki karakter magnet pada keadaan padat. Kombinasi antara karakter magnet dan konduktivitas dari superatom ini juga menjadi keuntungan.Magnesium merupakan konduktror listrik yang baik sehingga superatom ini menggabungkan karakter magnet dan konduktivitas listrik pada kulit terluar.
Kestabilan superatom ini dipengaruhi oleh struktur elektronik dari masing-masing penyusunnya. Kelompok superatom dengan delapan atom magnesium menambah kestabilan karena orbital valensi elektron yang terisi penuh. Orbital valensi yang penuh ini lebih sulit dipisahkan dibandingkan dengan orbital yang kosong atau setengah terisi sehingga menjadi lebih stabil. Orbital valensi yang penuh ini ditemui pada golongan gas mulia.
Kombinasi antara karakter kemagnetan dan konduktivitas listrik dari superatom ini dapat digunakan untuk aplikasi perangkat “elektronik molekular”. Teknologi semacam ini dapat menciptakan perkembangan di dunia komputer kuantum dengan prosesor yang lebih cepat, penyimpanan data yang lebih besar, dan sistem pengolahan data yang lebih terintegrasi
 
sumber : http://artikelkimiaterbaru.blogspot.com/2014/01/superatom-mengubah-atom-non-magnet.html

Unsur Timbal (Pb)

Posted by Unknown On 04.18
Unsur Timbal atau plumbum adalah unsur dengan nomor atom 82, lambang Pb, dan Berat Atom = 207,2; berwarna abu-abu kebiruan dan lunak; terdiri atas isotop dengan nomor massa 203-210. Dengan rapatan yang tinggi (11,48 g mL-1 pada suhu kamar).

Reaksi yang Melibatkan Unsur Timbal

Unsur Timbal mudah melarut dalam asam nitrat yang sedang kepekatannya (8 M), dan terbentuk juga nitrogen oksida :
3Pb + 8HNO3 (pekat)  ——>  3Pb(NO3)2(aq) + 2NO(g) + 4H2O(l)
Gas nitrogen(II) oksida yang tak berwarna itu, bila bercampur dengan udara, akan teroksidasi menjadi nitrogen dioksida yang merah:
2NO(g)  (tidak berwarna) + O2(g) ——>   2NO2(g)  (merah)
Dengan asam nitrat pekat terbentuk lapisan pelindung berupa timbal nitrat pada permukaan logam, yang mencegah pelarutan lebih lanjut. Asam klorida encer atau asam sulfat encer mempunyai pengaruh yang hanya sedikit, karena terbentuknya timbal klorida atau timbal sulfat yang tak larut pada permukaan logam itu.
Endapan timbal sulfida terurai bila ditambahkan asam nitrat pekat, dan unsur belerang yang berbutir halus dan berwarna putih akan mengendap :
3PbS (s) + 8HNO3(pekat) ——->  3Pb(NO3)2(aq) + 3S(s)   + 2NO(g)  + 4H2O(l)

Karakteristik dan Manfaat Unsur Timbal (Pb)

Unsur Timbal adalah sebuah elemen beracun, secara prinsip terdispersi di alam dan lingkungan pertanian melalui aktivitas manusia seperti pembuangan kotoran dan asap kendaraan bermotor serta melalui emisi atmosfir dari aktivitas industri dan pemukiman kota seperti limbah baterai.  Walaupun unsur Timbal tidak essensial untuk pertumbuhan tanaman, namun dapat diambil oleh kebanyakkan spesies tanaman dalam jumlah yang relatif sedikit.
timbal 300x240 Unsur Timbal (Pb)
Unsur Timbal secara intensif digunakan dalam pelapisan logam (elektroplating), pembuatan baterai. Aktifitas antropogenik lainnya seperti industri logam, pertambangan, produksi, penggunaan dan pembuangan baterai, limbah terkontaminasi logam dan pembuangan lumpur, asap kendaraan bermotor menyebabkan penyebaran yang luas dari unsur Timbal ke dalam lingkungan termasuk tanah.
Pada kondisi lingkungan yang umum, unsur Timbal masuk pertama kali ke akar. Unsur Timbal mudah terpenetrasi ke akar melalui jaringan kortikal dan ditranslokasikan pada jaringan bagian atas tanah. Segera setelah unsur Timbal masuk ke akar, ia dapat mencapai xylem melalui jalur apoplastik dan atau jalur simplastik, terkompleks oleh beberapa ligan seperti asam-asam organik dan atau fitokelatin.
Manfaat unsur Timbal yang dapat dilihat dalam kehidupan sehari-hari :
  • digunakan pada baterai
  • pelindung kawat, pipa ledeng, dan amunisi
  • logamnya sangat efektif sebagai peredam suara
  • pelindung radiasi pada sinar X dan reaktor nuklir
  • oksidanya digunakan pada produksi kristal kaca dan kaca flint, dan indeks biasnya yang tinggi untuk lensa aromatik
  • insektisida
sumber : http://artikelkimia.com/unsur-timbal-pb.html

Materi Gelap di Matahari?

Posted by Unknown On 04.15
Spektroskopi neutrino bisa memeriksa keberadaan materi gelap di Matahari

Materi Gelap di Matahari?

Bukti tentang adanya materi gelap berasal dari obyek-obyek besar, mulai dari yang berkaliber galaksi sampai ke struktur alam semesta itu sendiri. Namun sebuah naskah yang dipublikasikan di Science mengindikasikan bahwa kita bisa melihat pada sesuatu yang lebih kecil dan lebih dekat yaitu Matahari, jika kita mau mulai mencari tahu seperti apa gambaran materi gelap itu. Karena materi gelap berinteraksi melalui gravitasi, Matahari memiliki konsentrasi gravitasi terbesar di sekitar kita, dan naskah tersebut mengargumentasikan bahwa materi tambahan seharusnya mempengaruhi produksi neutrino dengan cara yang bisa dideteksi.

Naskah itu merupakan suatu Brevia (laporan pendek) dan teksnya bahkan tak sampai satu halaman penuh, tapi naskah tersebut mengintisarikan banyak informasi ke dalam halaman pendek itu. Pengarangya menunjukkan bahwa gravitasi Matahari akan menangkap materi gelap ketika bergerak melalui Bima Sakti dan dengan adanya partikel-partikel materi gelap ini di Matahari, setidaknya menimbulkan tabrakan-tabrakan lemah dan jarang dengan materi biasa. Partikel-partikel itu akhirnya akan terakumulasi di inti Matahari yang kemudian akan mempengaruhi reaksi fusi yang terjadi.

Menurut pemetaan Matahari saat ini, reaksi-reaksi berbeda terjadi pada kedalaman berbeda, dan hal ini akan bermuara pada distribusi neutrino yang tak sama yang dihasilkan oleh reaksi-reaksi ini. Materi gelap akan mengubah lokasi-lokasi reaksi ini dan menyebabkan perbedaan yang bisa dideteksi pada aliran neutrino yang keluar dari Matahari. Saat ini kita belum memiliki perangkat keras untuk mendeteksi perbedaan-perbedaan ini, tapi para peneliti mengatakan bahwa mereka akan segera memiliki observatorium neutrino.

Perlu diperhatikan bahwa pemetaan materi gelap surya yang mereka gunakan mengandung beberapa asumsi di luar interaksi dengan materi biasa, seperti massa partikel-partikel itu sendiri dan kemampuannya untuk saling menghilangkan satu sama lain dalam tabrakan. Namun para peneliti menunjukkan betapa berubahnya asumsi-asumsi ini bisa menghasilkan hasil yang signifikan berbeda. Hal in berarti bawa walaupun eksperimen yang akan dilakukan tidak menyediakan bukti yang meyakinkan tentang materi gelap, setidaknya mereka bisa mengemukakan beberapa pemetaan seperti apa sebenarnya partikel-partikel materi gelap itu.

sumber : http://sainspop.blogspot.com/2010/09/materi-gelap-di-matahari.html
  • Blogger news

  • Blogroll

  • About